
1. Connection: Quasispecies ↔Replicator ↔ Lotka-Volterra:  
 
1-A. Quasispecies Equation1 
 
i    denotes a sequence 
fi   denotes the fitness of sequence i 
xi  is the fraction of sequence i in the population of  N sequences that constitutes the   
        quasispecies 
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qij  probability that the replication of sequence i produce the mutant sequence j, i.e.    
         qij is the probability of mutation from i to j, 
therefore: 
 
Mutation Matrix Q = [qij]. 
 

Since  qij  are probabilities, each row must sum 1: . 1
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Quasispecies equation:   
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       constraint to ensure  
       the normalization (1.1) 
can be also written as: 
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where qii = 1- µ  ( µ : mutation rate);  
 
If  µ = 1 ⇒ qii =1 and qij = 0 ∀i ≠ j, then: 
 

Replicator Dynamics:  )( ffxx iii −=&    i =1,…,N     (1.3) 
 
1-B. Game Theory: Fitness of a Strategy 
 
fi   fitness of strategy i (when confronted with the other strategies): 
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1 See: M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life,  Harvard University Press, 2006. 



where  pij is the payoff that gets the strategy i when confronted with the strategy j and  
   
P is the Payoff Matrix  
P = [pij]. 
Then, 
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And eq. (5) can be mapped into the (ecological) generalized Lotka-Volterra model2: 
 
1-C. Generalized Lotka-Volterra Model 
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ri =piN – pNN 
bij =pij – pNj 
 
 
 
 
 
2. Transition from Quasispecies Phase ↔ Drift Phase   
 
 
Let’s consider the following simplification: the sequence 1 is the master sequence and all the 
other background sequences are “averaged” into another single sequence 2. Transitions from  
the background to the master are highly improbable so there are neglected. Hence we get the 
pair of equations: 
  

( )ffxx −−= )1(111 µ&       (2-1a) 

( ) 11222 xfffxx µ+−=&       (2-1b) 
 
Since x2 = 1 – x1  it is enough to analyze just the equation for the master sequence. Its fixed 
points are: 
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From the second fixed point we can get the critical values of f1 for which both roots collapse: 
 

                                                 
2 See Hofbauer and Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press 1998 
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This equation can be understood intuitively: 
The error catastrophe occurs when the effective grow rate of the master sequence becomes equal 
to the grow rate (fitness) of the background i.e. when 
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For a fixed value of f2, equation (2-3) correspond to a line of information catastrophe transition 
separating the Quasispecies phase from the Drift phase in the phase diagram below: 
 

 
(Picture from R.V. Sole´ et al. / Journal of Theoretical Biology 240 (2006) 
353–359) 
 
The red arrow indicates a possible way to transition from the Quasispecies to the Drift phase by 
enhancing mutations with a mutagenic agent. Conversely, the green arrow correspond to the 
inverse transition by adding polymerase that corrects mistakes during replication. 
 
 
3. Transition from Clear ↔ Turbid water in lakes   
 
 
3-A. A Minimal Model 
 

A minimal model of an ecosystem model (MEM) showing hysteresis describes the 
change over time of some property s that characterizes the state of the ecosystem (for example 
water turbidity in a lake) by:   

 
ds/dt = a -bs + rf (s),    (3.1) 

 
where the parameter a represents an environmental factor that promotes s (for instance nutrients 
loading rate), b represents the rate at which s decays in the system (nutrient removal rate), r is 
the rate at which s recovers (internal nutrient recycling) and f  is a Hill function: 
 

f (x)= x q/( xq + hq).     



 
 
At equilibrium (3.1) reduces to: 
 

                         a -bs + r s q/( sq + hq) = 0.                   (3.2) 
 

or, equivalently: 
 

        -bsq+1 + (a + r) sq - b hq s  + a hq = 0.                   (3.2’) 
 

Dividing by b we get: 
 

        -sq+1 + (a/b + r/b) sq - hq s  + (ahq)/b = 0.         (3.2”) 
 
 
 

If r = 0 (no recycling), then a single equilibrium state: 
  

s=a/b 
 
The value of  q doesn’t have a qualitative effect: for any q it is easy to prove that the polynomial 
(3.2”) has at most 3 real roots. Taking the second derivative of this polynomial PMEM(s) = -sq+1 
+ (a/b + r/b) sq - hq s  + (ahq)/b one gets: 
 
PMEM”=-(q+1)q sq-1 + q(q-1)(a/b + r/b) sq-2 ,                    
 
and equating it to zero we get that the concavity changes sign for s given by:  
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i.e. 
 
only one change of sign for positive values of s and therefore, at most there are 3 real roots for s 
≥0. Figure 2 is a plot of PMEM for different values of q and a/b=0.15, r/b=1.7 and h=1.. 
 



 
Fig.2 

 
 
 



 
3-B. Parallelism between the clear-turbid transition and the liquid-gas 
transition 
 
Let’s analyze the parallelism between  the transition líquid-gas (L-G) and clear to turbid water 
(C-T) or "without algae"-"with algae". 
Let’s work with non dimensional variables: x = s/h,  b = bh/a and r = r/a.  
In the C-T transition, the  'conditions' of figs. 2 and 3 correspond to a varying parameter (b or r) 
and the other (r o b) fixed and the 'ecosystem state' specified by the variable x. Thus the curves 
of these figures would be equivalent to isotherms (the specific volume v varying with P for fixed 
T) or isobars (v varying with T for fixed P).  
The following table  summarizes this correspondence:  
 
 
                                       L-G                   C-T  
  
state of the system specified by            molar volume v                  turbidity x  
  
 control parameters            P and T                     b and r  
 
 polynomial P3 of degree 3                       Eq. of State P3(v)=0        Evolution Eq. P3(x)=dx/dt 
 for the state variable                    
 
 curves iso-parameter                                    isotherms, isobars                    iso-b, iso-r  
 
 metastability                                                        Yes                          Yes 
 
 hysteresis                                    Yes3                      Yes 
                                    
 critical slowing down  (when the            Yes                           Yes? 
 3 roots of P3 collapse in one)  
 
 Loop or "S" of the isoparam           By energetic arguments is                 ?  
  curves                                               replaced by an horizontal  line4      
                            
 Kinetics of the transition                      Nucleation or Spinodal                          ?  
                              Decomposition 
 
(Al tener para C-T una ecuación dinámica para x y no una ecuación de estado, entonces pueden poner las flechitas 
indicando hacia donde se mueve el sistema según el punto en el plano conditions-ecosystem_state en que se 
encuentre.  
Esto es, la "S" divide al eje de las x en 4 regiones delimitadas por las 3 raíces con signos + - + -. Por lo tanto los 
tramos de la S que aparecen llenos son estables y el dashed es inestable.  
Para L-G dado un punto sobre el tramo recto de una isoterma, lo que determina para donde se mueve es el signo 
de dQ/dt (Q calor entregado), si  dQ/dt > 0 (<0) se mueve hacia la derecha i.e hacia el gas (líquido).  
Quizá, siguiendo la analogía hasta sus últimas consecuencias,  una ecuación dinámica para L-G sería algo así:  
dv/dt  proporcional  dQ/dt*P3(v) ) 
 

                                                 
3 With the required provisions (very slow changes, no impurities, no waves or mechanical perturbations). 
4 Maxwell’s construction.   
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Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                                                                    Figure 3 & 4 

 
 
 

 
 

The co-existence curve (yellow dashed) is inverted i.e. delimits a region for high values 
of r/a and b/a !   



 
3-C. Photoinhibition 
 
 
The transition clear to turbid water (C-T) or "without algae"-"with algae" can be connected with 
the phenomenon of photoinhibition. 
 

Photoinhibition 
From Wikipedia, the free encyclopedia 

Photoinhibition is a reduction in a plant's (or other photosynthetic organism's) capacity for 
photosynthesis caused by exposure to strong light (above the saturation point). Photoinhibition 
is not caused by high light per se, but rather absorption of too much light energy compared with 
the photosynthetic capacity, i.e. any excess energy that the photosystem cannot handle is 
damaging.  

Photoinhibition is often reversible, i.e. dynamic photoinhibition, and does in that case not inflict 
permanent damage to the photosystem. However, severe photoinhibition over a long time may 
cause highly reactive free oxygen radicals to form, which degrade photosynthetic components, 
i.e. chronic photoinhibition or photodamage. Plants and algae have several mechanisms to 
protect against photoinhibition, e.g. through the xanthophyll cycle. 
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A simple model for photoinhibition, let’s call the full version, is: 
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In the simplified version the nutrients factor (encircled in orange in equation (3.4) ) is removed. 
In fact, this factor is almost always close to 1 and, at first sight, doesn’t have a relevant effect (see 
upper panel in the figure below, where the curves with and without this term are filled and dashed 
respectively).   
 

http://en.wikipedia.org/wiki/Photosynthesis
http://en.wikipedia.org/wiki/Xanthophyll


 
Figure 5 

 
However, Huisman notes that for sufficiently high irradiation (around 2000 µ mol photons m-2 s-1) the 
stable non-null fixed point disappears (see Fig. 3-(A) ).  In other words, for sufficiently high 
irradiation the 3 roots can collapse into one. This looks like what occurs at a critical point indeed. So I 
found a subtle difference between the full and the simplified version: the way dg/dt becomes 0. If we 
look at the upper panel we see that for I0 = 1000 and 1500 µ mol photons m-2 s-1 (blue and green) the 
curves intersect with the horizontal axe with positive concavity, while for I0 = 2250 and 2500 the 
concavity is negative, indicating that the rightist root is an artifact. The lower panel is a plot of the 
concavity that shows that its sign at stable points, marked in the upper panel by thick dots, is positive 
for I0 = 1000 and 1500 (blue and green dots) and negative for I0 = 2250 and 2500.  
So it seems, after all, that the model can accommodate a critical point for I0 ≈ 2000  µ mol 
photons m-2 s-1  !!! 
I think that it would be interesting to look for signatures of criticality. For instance, to measure spatial 
properties trying to find power laws or temporal correlations to detect critical slowing down.  
Of course, the simplified version can be used as a first and guiding approach, but I think that the full 
version opens the possibility to explore the existence of these interesting properties. 
 
 
 


